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The recent COVID-19 crisis has revealed the urgent need to study the impact of an infectious disease
on market economies and provide adequate policy recommendations. The present paper studies the
optimal lockdown policy in a dynamic general equilibrium model where households are altruistic and
they care about the share of infected individuals. The spread of the disease is modeled here using SIS
dynamics, which implies that recovery does not confer immunity. To avoid non-convexity issues, we
assume that the lockdown is constant in time. This strong assumption allows us to provide analytical
solutions. We find that the zero lockdown is efficient when agents do not care about the share of
infected, while a positive lockdown is recommended beyond a critical level of altruism. Moreover, the
lockdown intensity increases in the degree of altruism. Our robust analytical results are illustrated by
numerical simulations, which show, in particular, that the optimal lockdown never trespasses 60% and
that eradication is not always optimal.

© 2021 Elsevier B.V. All rights reserved.
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1. Introduction

On December 31st, the Chinese WHO office was informed of
ases of pneumonia of unknown origin in the city of Wuhan. On
he 11th and 12th January, the Chinese authorities identified a
ew type of coronavirus as the cause of the illness. On January
he 23rd, there were 571 cases and 17 deaths. Dreading the
apid expansion of the illness, the Chinese government decided
n that date to lock down the city of Wuhan and the neighboring
egion, affecting a total of about 57 million people. Only a share
f healthy individuals of a household could go out, once a day,
nd only for essential shopping. The economic activity fell and
he world feared a recession. Within one month, the rest of the
orld had to face the same problem. On the 11th of March 2020,
he World Health Organization (WHO) declares that epidemic
ad become a pandemic. The difficult question all policy-makers
eed to face is the extent of the lockdown. Can a country stop
n epidemic while maintaining some economic activities? All
ctivities? The present paper proposes a series of three nesting
tylized models of lockdown, establishing the feedback between
he pandemic and production.

✩ The authors would like to thank Cuong Le Van for his helpful comments and
suggestions. Stefano Bosi acknowledges the financial support of the E3 Project
of the University Paris-Saclay, France.
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304-4068/© 2021 Elsevier B.V. All rights reserved.
The urgency of the epidemiological issue and its economic
consequences have led a number of specialists in economic dy-
namics in a race against time to recommend policy solutions. Ace-
moglu et al. (2020), Alvarez and Argente (2020), Atkeson (2020)
and Eichenbaum and Rebelo (2020) introduce a SIR epidemi-
ological assumption in an infinite-horizon general equilibrium
model without capital accumulation. In the SIR model, popula-
tion splits in three groups: Susceptibles (S), Infectives (I) and
emoved/Recovered individuals (R). The SIR’s main assumption
s that recovered individuals develop a lifelong immunity, that is,
hey cannot contract the disease again. In particular, in Alvarez
nd Argente (2020) a policy-maker minimizes simultaneously
he discounted value of fatalities and the output costs of the
ockdown. Because of the interplay between the epidemic dynam-
cs and the lockdown, the problem is non-convex. The authors
rovide numerical simulations using the recent preliminary data
n COVID-19. In all their scenarios, the optimal policy starts with
severe lockdown of at least 60%, which is gradually lessened.
he disease disappears in the long run in all considered scenarios.
oing further, Acemoglu et al. (2020) build a multi-risk SIR model
onsidering three age groups who suffer differently from the
OVID-19 pandemic. Even further, their model also explores the
mpact of social distancing, testing and the arrival of a vaccine
n optimal policies. Given the complexity of the problem and
ts stochastic nature, the authors are obviously obliged to re-
ort to numerical simulations as well. They show that imposing
argeted lockdown measures, social distancing and increasing
esting minimize economic losses and deaths. In all scenarios,
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hether semi-targeted or uniformly targeted policies are chosen,
positive lockdown is always adopted while waiting for the

accine. Finally, let us mention Gollier (2020), who also analyzes
multi-risk SIR model with three population groups. Among the

amily of reasonable policies, Gollier (2020) notices the existence
f two polar solutions ‘‘potentially optimal‘‘. In the first solution, a
our months lockdown of 90% succeeds eradicating the pandemic.
n the second, a five months lockdown of 30% allows to flatten the
urve. The cost of both strategies is similar, a 15% of annual GDP.
n all three papers, the policy maker takes into account deaths as
cost which is equal to a life’s statistical value.
Our paper aims at exploring other directions. In particular, we

hallenge the permanent immunity assumption made in the liter-
ture so far, remarking that the optimal lockdown policy is clearly
ensitive to the duration of immunity after recovery. Neverthe-
ess, regarding COVID-19 and to date, there is no consensus about
he duration of immunity. However, for a majority of virologists
he immunity period is plausibly short (see, for instance, the
HO COVID-19 daily press briefing on the 13th of April 2020).
ublished in September 2020, Ibarrondo et al. (2020) insist on the
apid decay of COVID-19 antibodies in persons with mild COVID-
9, which is the vast majority. For this population, the half-life
f antibodies is 36 days. Furthermore, building upon their own
esults, the authors express their doubt about a possible herd
mmunity, and even about the durability of any future vaccine.1
his lack of sound knowledge about the duration of immunity
hould press the scientific community to open their research lines
nd search for robust policy recommendations under all possible
cenarios for immunity.
In this context, the Susceptible–Infected–Susceptible (SIS)

odel represents an interesting alternative to the SIR framework.
he SIS approach considers indeed the opposite case: recovery
oes not confer immunity. More precisely, the population is
ivided in two groups: Susceptibles (S) and Infectives (I). A sus-
eptible can contract the disease after a contact with an infective
nd, then, get back to the group of susceptibles after recovery.
istorically, the SIS model has been used to represent the spread
f bacterial diseases as meningitis and plague, or the spread
f protozoan diseases as malaria or the sleeping sickness (see
ethcote, 1976). In the current pandemic of COVID-19, the choice
f a SIS model may a priori seem a rather extreme choice. Never-
heless, we believe that in the context of policies concerning both
he short and the long-term, the SIS model is better suited than
he SIR model, in which recovery confers permanent immunity.

The hybrid literature combining economics and epidemiology
ates back to the early Seventies. In one of the seminal contribu-
ions, Sanders (1971) minimizes the social cost of an epidemic
inding the optimal treatment in a SIS model. Because of the
onstant marginal cost of the treatment, a bang–bang solution
s obtained: either the effort of the public health system is at
ts maximum and the disease eradicated; or the public health
ystem does not make any effort and the disease grows out
f any control (see also Sethi, 1974). The same minimization
rogram was reconsidered in Goldman and Lightwood (2002)
lthough with a more general social cost function. The authors
rovide conditions ensuring the optimality of the disease-free
teady state. Identical conclusions were reached by Gersovitz and
ammer (2004) and Barrett and Hoel (2007) with a vaccina-
ion protocol instead of a treatment effort. To the best of our
nowledge, the first attempt to introduce the SIS hypothesis in
n economic growth model is Goenka and Liu (2012). Like them,
e also consider an infinite-time-horizon model, but, instead of

1 Herd immunity is the indirect protection conferred to susceptible indi-
iduals when there is a sufficiently large proportion of immune individuals
Randolph and Barreiro, 2020).
 i

2

considering a centralized economy a la Ramsey, we work with a
general equilibrium model based on market mechanisms in the
spirit of Bosi and Demarchelier (2018).

The main objective of the present paper is to provide policy
makers with robust optimal recommendations in face of an epi-
demic of the SIS type. Our determination to provide exact optimal
policies will force us to assume that the lockdown is constant in
time. As a result, we model here a government who chooses the
lockdown level that maximizes a measure of inter-temporal social
welfare over an infinite time horizon. Welfare is understood here
in a large sense since it embraces empathy towards infectives.
In particular, welfare depends, as usual, on households’ con-
sumption but also on the share of infectives which is a negative
externality: the more infectives, the less the household enjoys
consumption. It is important to add a few words on empathy.
Empathy is one of the key features of the COVID-19 pandemic and
of the present paper. Without empathy the extreme lockdown
measures imposed all over the world could not be understood.
Certainly, the virus is fatal mainly for retired individuals: a 6%
of all infected over 65 years dies (see Ferguson et al., 2020). The
economic loss that follows the lockdown would be way too high
according the pure economic reasons. The recent literature men-
tioned above introduces fatalities in the policy maker’s objective
as statistical economic losses. Among them, only Acemoglu et al.
(2020) consider a measure of empathy, in this case, an emotional
cost of death. We also believe that empathy towards the infected
plays a major role in political and economic decisions, and as a
consequence, we assume that individuals maximize their overall
welfare, which depends as usual on consumption, and also on the
share of infectives in the society.

As mentioned, the purpose of this paper is to provide with the
lockdown rate which maximizes overall welfare. One particularity
of our approach is that this lockdown rate is assumed to be
constant in time while other recent contributions have consid-
ered a dynamic lockdown (e.g. Alvarez and Argente (2020)). We
have introduced this limiting assumption because, as in Alvarez
and Argente (2020), interactions between the epidemiological
model with a dynamic lockdown (control variable), makes the
problem non-convex. Technically speaking, it means that given
a candidate to optimal solution, one cannot verify the second
order condition. As a result, it would not be possible to prove
that the policy recommendation we provide regarding the lock-
down rate is indeed maximizing welfare.2 Without addressing
theoretically the convexity question, Alvarez and Argente (2020)
and Acemoglu et al. (2020) resort to numerical simulations. By
considering only constant lockdown policies, we ensure in this
paper the optimality of our problem while providing an analytical
and robust solution.

We construct three embedded models which correspond to
two different welfare measures and which include, or not, the ac-
cumulation of wealth. More explicitly, we study first the optimal
lockdown prescribed by the Ramsey criterion. In the Ramsey cri-
terion, all generations are equally important to the policy maker.
Although ethically fair, it presents a major technical challenge
since overall welfare cannot be computed over an infinite period.
Ramsey (1928) proposed to maximize welfare as the distance of
actual welfare to a bliss point. For any level of altruism, we obtain
the explicit forms for the optimal lockdown, the evolution of the
epidemic and the household’s consumption. Without empathy,
the policy maker optimally chooses a zero lockdown, while un-
der empathy a positive lockdown is optimal. In both cases, the
economy converges to the endemic steady state: in the long run
it is optimal to accept a permanent number of infectives in order

2 For further details on the role of the second-order condition, see for
nstance Seierstad and Sydsaeter (1987).
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o avoid unbearable economic and social costs even if agents are
ltruistic.
Next, we use the Cass–Koopmans criterion (1965) to describe

he policy maker’s representation of welfare. Here, households’
tility is discounted in time so that future generations weight less
n overall welfare. The Cass–Koopmans criterion is more difficult
o solve, but still we are able to find the long-run solution.
f we focus on maximizing long-run welfare, a positive level
f lockdown remains optimal. However, the eradication of the
isease is efficient only if households are empathetic towards
nfectives. When welfare is maximized along the transition, the
ptimal lockdown is positive only beyond a critical degree of
ltruism. Nevertheless, the optimal lockdown may be here in-
ufficient to eradicate the epidemic, in contrast with some pure
pidemiological models.
Finally, we introduce capital accumulation in the previous

ass–Koopmans model to appreciate the impact of the lockdown
n the wealth of a nation. We obtain the same qualitative results
s in the basic model without capital and, in this sense, our
onclusions seem quite robust.
As already mentioned, we use numerical exercises to illustrate

ur theoretical results and optimal policy recommendations. We
alibrate the models using the most updates COVID-19 data, in
ine with the recent literature. Among all results, let us advance
hat the optimal lockdown is always lower than 60%, as in Alvarez
nd Argente (2020) and Acemoglu et al. (2020). Although our
rameworks are different, a SIR model with very low mortality
nd a SIS model, where mortality is zero, are relatively close.
The rest of the paper is organized as follows. Section 2 presents

he standard SIS model under consideration, and it obtains the
xplicit trajectory for the share of infected under very general
ssumptions. Section 3 presents the economic framework. Then
ections 4 and 5 present and analyze the epidemic-augmented
nfinite-horizon models without capital accumulation and the
rowth model. Finally, Section 6 concludes. All proofs are gath-
red in the Appendix.

. Epidemiology

At time t population is divided in infectives and susceptibles
f contracting a disease. Let N (t), I (t) and S (t) denote total

population, infectives and susceptibles at time t , so that

N (t) = I (t) + S (t)

Let

x (t) ≡
I (t)
N (t)

be the share of infectives in total population.
To contain the epidemic, the government decides to impose a

lockdown, which will stay constant over time. Let λ ∈ [0, 1] de-
note the share of locked down citizens.3 The number of infectives
and susceptibles in circulation are given by

(1 − λ) I (t) = (1 − λ) x (t)N (t) and
(1 − λ) S (t) = (1 − λ) [1 − x (t)]N (t) (1)

One of the key characteristics of an epidemic is the way
it transmits between two humans who get close enough. We
assume that each individual in circulation meets a fixed number
ν of people per period. In this case, an infective in circulation
meets ν [1 − x (t)] susceptibles on average. The total number of

3 Contrary to Alvarez and Argente (2020) and to Acemoglu et al. (2020),
he lockdown level is not constrained by an upper bound less than one. A
olicy-maker could in principle lock down all population if she found it optimal.
lthough this could indeed be the case in the pure epidemiological model, we
ill prove that it is never optimal to confine all the labor force.
3

meetings between infectives and susceptibles in circulation is
given by ν [1 − x (t)] (1 − λ) I (t) and the total number of new in-
ectives by pν [1 − x (t)] (1 − λ) I (t), where p is the susceptible’s
robability of getting sick during a meeting with an infective. The
nfectivity rate p is disease-specific.

Thus, the number of new infectives is given by

İ (t) = [µ (1 − λ) [1 − x (t)] − m − r] I (t) (2)

where µ ≡ νp. m and r are the mortality and the recovery rates
f infectives, with m ≥ 0 and r ≥ 0.
Population evolves according to a simple law:

˙ (t) = nN (t) − mI (t) (3)

where n ≥ 0 denotes the net rate of population growth without
he mortality due to the infectious disease.

Dividing (2) and (3) by N (t), we obtain

İ (t)
N (t)

= (µ (1 − λ) [1 − x (t)] − m − r) (1 − [1 − x (t)]) (4)

Ṅ (t)
N (t)

= n − mx (t) (5)

Observe that the derivative of the share of infectives can be
written as

ẋ (t) =
d
dt

I (t)
N (t)

=
İ (t)
N (t)

−
I (t)
N (t)

Ṅ (t)
N (t)

=
İ (t)
N (t)

− x (t)
Ṅ (t)
N (t)

Then, substituting İ (t) /N (t) and Ṅ (t) /N (t) into the above
description of ẋ, we obtain the reduced form of epidemiological
ynamics:

˙ (t) = x (t) ([1 − x (t)] [µ (1 − λ) − m] − n − r) (6)

Let us introduce some critical values for the lockdown and the
share of infectives, which are key references in the sequel:

λ1 ≡ 1 −
m + n + r

µ
, λ2 ≡ 1 −

m
µ

and x1 ≡ 1 −
n + r

µ (λ2 − λ)
(7)

The following plausible assumption means that the number of
meetings ν has to be large enough for the illness to become and
epidemic and as a result, a subject of public concern.

Assumption 1.

µ > m + n + r

Note that Assumption 1 implies 0 < λ1 < λ2 < 1. Under
Assumption 1, we can solve (6) and completely characterize x.

Proposition 1 (Epidemiological Dynamics). Let Assumption 1 hold.
The share of susceptibles at time t ≥ 0 is

x (t) =
x0x1

x0 + (x1 − x0) eµ(λ−λ1)t (8)

with x0 ≡ x (0), the initial share of susceptibles.
There are two stationary states:
(i) a disease-free steady state, that is, x̄ = 0;
(ii) an endemic steady state in which x̄ = x1 ∈ [0, 1].
The endemic steady state exists if and only if the lockdown rate

λ is below the first threshold: λ ≤ λ1. When λ = λ1, the endemic
and the disease free steady state coincide.

Worth to note, the evolution of x in time crucially depends on the
lockdown λ:

(1) if 0 ≤ λ < λ1, then x (t) increases (decreases) continuously
from x0 to x1 > 0 if x0 < x1 (x0 > x1). If λ < λ1, the steady state
x̄ = x1 ∈ (0, 1) is globally stable and the steady state x̄ = 0 globally
unstable.

(2) if λ1 ≤ λ ≤ 1, then x (t) decreases continuously from x0 to
x̄ = 0 and the steady state x̄ = 0 is globally stable.
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roof. See Appendix A. ■

Proposition 1 shows that a policy locking down a share λ of the
opulation is effective in the control of epidemics, with complete
radication if the lockdown is strong enough. Indeed, when the
ockdown is strong (λ ≥ λ1), the system converges asymptotically
o a solution free of disease. On the contrary, when the lockdown
s light (λ < λ1), the system converges to the endemic steady
tate with a strictly positive number of infectives.
There exists one important index in the epidemiological lit-

rature: R0. R0 is the basic reproduction number of a disease
epresenting its transmissibility. In our model, we can compute
0 as a function of the fundamental parameters and, then, under-
tand its determinants. In particular, we can show that R0 drives
he convergence to the endemic steady state and that it can be
einterpreted in terms of the critical lockdown level λ1. Let us see
ow. In the spirit of Hethcote (2000), we introduce the average
umber of new infectives generated by one infective as

(λ) ≡
µ

n + r
(λ2 − λ)

bserve that according to (7) and under the plausible assumption
hat λ < λ2,

1 > 0 ⇔ R (λ) > 1

hat is, the economy converges to an endemic steady state with
positive share of infectives if and only if R (λ) > 1.
Moreover, the critical value R (λ) can be reinterpreted in terms

of a critical lockdown. Indeed, since

R (λ) = 1 +
µ

n + r
(λ1 − λ)

e find that

(λ) > 1 ⇔ λ < λ1

here λ1 is the bifurcation point of the dynamics of x, given in
(8).

Here we define R0 as

R0 ≡ R (0) =
µ − m
n + r

(9)

In order to understand why R0 represents the basic reproduc-
tion number in a naïve population (where basic means λ = 0 and
naïve x = 0), let us focus on a simplified model with m = n = 0.
In this case, according to (7),

R0 =
µ

r
(10)

Consider now a group of quarantined infectives. Because of
the recovery rate, the number of infectives declines over time:
I (t) = I (0) e−rt . The average duration of illness in this group is
given by

D =

∫
∞

0
re−rt tdt = 1/r (11)

nd the average number of new infectives generated by an in-
ective in a na‘̀ıve population by pν (1 − x) = pν = µ times the
verage duration D, that is by R0 = µ/r .
To conclude this section, let us numerically illustrate the dy-

amics of x. Our exercises aim at highlighting the role of the
ockdown on the dynamics of x, and its convergence towards an
ndemic or a disease-free steady state. All the paper’s calibration
etails can be found in Appendix H. Let us just add here a few
ords on R0 and r . Only to mention two recent articles, Acemoglu
t al. (2020) use a value of R0 = 3.6 to align with Alvarez and Ar-
ente (2020). However, Acemoglu et al. (2020) consider the value
oo high and perform some of their exercises using R0 = 2.4,
s in Ferguson et al. (2020). In Gollier (2020), R depends on the
0

4

roup age. It ranges from 2.84 for the young, 2.64 for the medium
ge and 1.08 for seniors. Gollier (2020) also computes an ex-post
verall R0 of 2.37, after all the basic prevention measures were
aken in France. Here, R0 = 2.49 following recent estimations
one by the research group MIVEGEC/ETE at Montpellier Uni-
ersity. Regarding the illness duration, 1/r , Alvarez and Argente
2020) and Acemoglu et al. (2020) consider 18 days, whereas in
ur benchmark is slightly lower, 14 days. In Gollier (2020), people
ecovers after 2 or 3 weeks on average.

We observe that, using (7) and (9),

1 = 1 −
m + n + r

m + (n + r) R0

x1 = 1 −
n + r

(1 − λ) [m + (n + r) R0] − m
Fig. 1 shows two scenarios for the evolution of infectives. On

the left panel, the lockdown rate is λ = 1/3 < λ1 = 59.83% and
x converges towards the endemic steady state. There will always
be a 39.76% of infectives in the long run.

On the right panel, the lockdown is above the critical value:
λ = 2/3 > λ1 = 59.83%, and the disease is rapidly eradicated
(indeed, in this case x1 < 0).

These are hypothetical and possible trajectories where λ is
chosen arbitrarily. Next, let us introduce the economic assump-
tions of the model to provide foundations for the choice of λ.

3. Economics

As seen in the introduction, the hybrid theoretical literature
on the economic consequences of infectious diseases and the
relevant policy recommendations is flourishing. The literature on
infinite-horizon economies, pioneered by Goenka and Liu (2012)
and developed recently by Acemoglu et al. (2020), Alvarez and
Argente (2020), Atkeson (2020), Eichenbaum and Rebelo (2020),
Gollier (2020), or Piguillem and Shi (2020), mainly focuses on the
optimal lockdown under a permanent immunity (the so-called
SIR hypothesis) within a centralized Ramsey model. In contrast,
we consider here a SIS mechanism at work in a decentralized
market economy. Recall that under the SIS assumption, individ-
uals do not get immunity after recovery and can get infected
again.

For simplicity, let us fix m = n = 0 in Eq. (3) so that
population becomes constant over time (Ṅ (t) = 0). The critical
points λ1 and x1 in(7) become

λ1 ≡ 1 −
r
µ
, λ2 ≡ 1 and x1 (λ) ≡ 1 −

r
µ (1 − λ)

(12)

All the susceptibles in circulation work and only them. For the
sake of simplicity, teleworking is not allowed. The labor force is
then given by: L (t) ≡ (1 − λ) [1 − x (t)].

As explained in the Introduction, people care about infectives.
To capture this, we let individuals’ utility depend on a composite
good

G (t) ≡ G̃ (c (t) , 1 − x (t))

which is a function of individual consumption, c (t), and the share
1 − x (t) of susceptibles. Note that since agents cannot chose the
share of infectives, the empathy for the suffering of others is a
negative externality for the household.

Assumption 2. G̃ : R∗
+

×(0, 1] → R+ is C2, increasing in c (t) and
1 − x (t), and homogenous of degree one.

In all examples presented in the paper, we consider the fol-
lowing Cobb–Douglas specification for G:

G t ≡ c t 1−α [1 − x t ]α (13)
( ) ( ) ( )
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Fig. 1. Epidemiological model.
a

α

ith 0 ≤ α < 1. Here α captures the degree of altruism. When
= 0, the agent is selfish; when α > 0, she is altruistic.
For simplicity, all households are identical. Since households

ive forever and population is constant over time, welfare maxi-
ization is equivalent to utility maximization.
The government maximizes the following utility functional

ith respect to the lockdown degree:

(λ) ≡

∫
∞

0
e−ηθ t [u (G (t)) − (1 − η) u

(
Ḡ
)]

dt (14)

where η ∈ {0, 1} and θ is the time discount rate. In the follow-
ing, we consider two different criteria of welfare maximization
depending on η:

(1) the Ramsey criterion with η = 0. Here, agents do not
discount future and the bliss point u

(
Ḡ
)
is taken into account.

(2) the Cass–Koopmans criterion with η = 1. Contrary to
ase (1), agents discount the future without referring to a bliss
oint: the welfare functional boils down to the standard utility
unctional (Cass, 1965; Koopmans, 1965).

Finally, u = u (G) represents instantaneous utility and Ḡ is
defined as

Ḡ = G̃ (c̄, 1 − x̄)

is the stable (either endemic or disease-free) steady state. u(Ḡ)
is the bliss point considered by Ramsey (1928) and mentioned
in the Introduction. As it is usual, we establish the following
assumption regarding the utility function.

Assumption 3. The felicity function u : R++ → R is C2 with
u′ (G) > 0 and u′′ (G) ≤ 0.

The elasticity of intertemporal substitution is given by

(G) = −
u′ (G)

Gu′′ (G)
(15)

when u′′ (G) < 0. In the case of a linear utility, the elasticity of
intertemporal substitution becomes infinite.

A standard functional form often considered to measure utility
is

u (G) ≡ C
G1− 1

ε

1 −
1
ε

(16)

with C > 0, which has the appealing property of a constant
elasticity: ε (G) = ε > 0. Note that since the argmaxλ∈[0,1] W (λ)
does not depend on C when the utility functional is separable, we
normalize C to one.

Recall that the purpose of our model is to compute the optimal
lockdown λ∗, that is the level of λ which maximizes the welfare
criterion W in (14):

λ∗
≡ arg max W (λ)
λ∈[0,1]

5

Regarding the economic set-up, we consider first a basic model
without capital accumulation in Section 4, and then a model with
capital accumulation in Section 5.

4. A basic model

In this economy the labor force is the only input and, for
simplicity, the production function is linear:

F (L (t)) = AL (t)

Output is entirely consumed, so that denoting by c (t) individ-
ual consumption, we have that N (t) c (t) = F (L (t)). Therefore,
individual consumption is given by

c (t) = A (1 − λ) [1 − x (t)] (17)

Notice that this amount of consumption is equivalent to the
market solution with a full pandemic insurance. Indeed, the firm’s
profit maximization problem yields: w (t) = A, where w (t)
is the unit wage at time t . A full worker’s insurance implies
that N (t) c (t) = wt (1 − λ) St = A (1 − λ) [1 − x (t)]N (t) and,
finally, (17). From (17), the cost of the lockdown policy in terms
of consumption obtains as Aλ [1 − x (t)].

Under Assumption 2, the composite goods becomes

G (t) = g (A (1 − λ)) [1 − x (t)]

where

g (A (1 − λ)) ≡ G̃ (A (1 − λ) , 1)

Let us assume that g (0) = 0 and let us define the elasticity of
the composite good as
A (1 − λ) g ′ (A (1 − λ))

g (A (1 − λ))
∈ (0, 1)

nd the degree of altruism (empathy) as:

(A (1 − λ)) ≡ 1 −
A (1 − λ) g ′ (A (1 − λ))

g (A (1 − λ))

In the sequel, we consider a constant degree of altruism:
α (A (1 − λ)) = α and, more explicitly, the Cobb–Douglas com-
posite good defined in (13). Note that when α = 0 (selfishness)
agents do not care about the infectives and the composite good
equals consumption: G (t) = c (t).

4.1. The Ramsey criterion

This first subsection computes the optimal lockdown rate
when the policy maker uses the Ramsey criterion to measure
welfare, this is, η = 0 in (14). We adopt here the simplest felicity
function, i.e. the identity:

u G = G (18)
( )



S. Bosi, C. Camacho and D. Desmarchelier Journal of Mathematical Economics 93 (2021) 102488

c
i

t

W

f

x

t

P
t

o
e
0

x

w
e
s
w
i
s
l
l
q
e
f

4

c

W

s

o

l

i
p

W

orresponding to a felicity function with an infinite elasticity of
ntertemporal substitution, that is, ε = ∞.

In this case, we can compute the optimal lockdown degree,
hat is the value of λ which maximizes the welfare functional:

(λ) ≡

∫
∞

0

[
G (c (t) , 1 − x (t)) − Ḡ

]
dt

= g (A (1 − λ))

∫
∞

0
[x̄ − x (t)] dt (19)

Whoever aims at maximizing W (λ) will compute its first and
second order derivatives to obtain the optimal level of λ. We will
be allowed to follow this standard procedure becauseW is indeed
twice differentiable given that g and x are twice differentiable
unctions of λ. Furthermore, W ′ (λ) = 0 if and only if4:

0 = x1 (λ) e−
1−x1(λ)

αx1(λ) ≡ φ (λ) (20)

Accordingly, let us denote by λ∗ the unique solution of (20),
hat is, λ∗ (α) = φ−1 (x0).

roposition 2 (Optimal Lockdown). Let Assumptions 1–3 hold and
he degree of altruism be constant. Then

(1) If agents are selfish (α = 0) and x0 < 1 − r/µ, then the
ptimal solution is zero lockdown: λ∗ (0) = 0. In this case, the
conomy converges to the endemic state limt→∞ x (t) ≡ x1 = λ1 >
along the trajectory

(t) =
x0λ1

x0 + (λ1 − x0) e−µλ1t

(2) If agents are altruists (α > 0), then for any lockdown degree
λ∗

∈ (0, λ1) there always exists a degree of altruism α ∈ (0, 1)
such that λ∗ is optimal: λ∗

= argmaxλ∈[0,1] W (λ) ∈ (0, λ1). In this
case, the economy converges to the endemic state limt→∞ x (t) ≡

x1 (λ∗) > 0 along the trajectory

x (t) =
x0x1 (λ∗)

x0 + [x1 (λ∗) − x0] eµ(λ∗−λ1)t

Furthermore the optimal lockdown degree increases in the degree
of altruism: λ∗′ (α) > 0.

Proof. See Appendix B. ■

As previously mentioned, a lockdown policy has two opposite
effects on labor supply and as a consequence, on production
and consumption. First, a more stringent lockdown lowers labor
supply. Second, a higher λ reduces the share of infectives which
in turn increases labor supply (recall that only healthy agents
are allowed to work). The previous proposition shows that the
negative effect always dominates when agent are selfish (α = 0),
and that they do not value health. The zero lockdown is always
recommended in this case. Conversely, when agents are altruistic
(α > 0), a substitution mechanism takes place: households are
willing to accept a lower consumption in exchange for more
healthy people. Here, the optimal policy is a positive lockdown. In
both cases, because of the economic effects of the lockdown, it is
efficient to reach an endemic steady state with a positive share of
infectives. This is in marked contrast with the recommendations
of most epidemiologists very intended to eradicate the disease
as quickly as possible (see Ogura and Preciado, 2017, among
others). As expected, even the simplest model encompassing
epidemics and economics finds there is a conflict between health
and production, which only empathy can partially overcome.

To complete this subsection, let us illustrate our results nu-
merically. Fig. 2 shows the optimal lockdown rate, λ∗, as a func-
tion of altruism, α, and the optimal welfare level when λ = λ∗,

4 See Appendix B for further details.
6

also as a function of α. As Proposition 2 proves, λ∗ increases
ith α. Note that λ∗ is positive only when altruism is powerful
nough. Under the exercise assumptions, a government facing
elfish agents does not confine the population. Note that optimal
elfare W (λ∗) also increases with altruism. Hence, despite the

ncreasing level of lockdown and the associated decrease in con-
umption, individuals feel more than compensated because of the
ower share of infectives. Finally, and noteworthy, the lockdown
evel is always smaller than the critical value λ1. As a conse-
uence, the number of infectives always converges towards the
ndemic steady state. That is, there will be a share of infectives
orever.

.2. Cass–Koopmans criterion

We focus next on the Cass–Koopmans welfare criterion, which
orresponds to the case where η = 1 in (14), that is:

(λ) ≡

∫
∞

0
e−θ tu (G (t)) dt (21)

The government can adopt either a naive or a sophisticated
trategy, that is, respectively,
(1) a welfare maximization at the steady state to find the

ptimal lockdown λS in the long run.
(2) an intertemporal welfare maximization to find the optimal

ockdown level λ∗ to implement from t = 0.
Let us focus first on the naive strategy in which the pol-

cy maker maximizes the optimal long-run lockdown. Here, the
olicy-maker maximizes

¯ (λ) ≡

∫
∞

0
e−θ tu

(
Ḡ (λ)

)
dt (22)

Note that since Ḡ (λ) is constant, we actually have that
W̄ (λ) = u

(
Ḡ (λ)

)
/θ .

Proposition 3 (Optimal Lockdown in the Long Run). Let
Assumptions 1–3 hold, and let us maximize the steady state welfare
criterion in (22). Then,

(1) If agents are selfish, i.e. α (A (1 − λ)) = 0, then there is
an interval of optimal lockdown values λS since any λS ∈ [0, λ1]
maximizes W̄ (λ).

In this case, if 0 ≤ λS < λ1, the economy converges to x∗
=

x1 > 0; if on the contrary λS = λ1, then the economy converges to
x̄ = x1 = 0.

(2) If agents are altruistic, i.e. α (A (1 − λ)) > 0, then the optimal
lockdown is λS = λ1 = 1−r/µ. In this case, the economy converges
to x̄ = 0.

Proof. See Appendix C. ■

Surprisingly, when agents are selfish, the optimal lockdown is
a continuum of values, meaning that the policy-maker is indif-
ferent between an infinite number of lockdown degrees. Let us
analyze why. When α = 0, welfare depends only on consump-
tion. As previously seen, the lockdown has opposite effects on
production and consumption. It has first a negative impact on
production because of the lower share of agents at work and,
second, a positive impact because of a lower share of infectives,
who are unable to work. Interestingly, at the endemic steady state
x̄ = x1, the decrease in 1 − λ compensates exactly the increase
in 1− x, as in the Ramsey criterion. As a result, according to (12)
and (17), long-run consumption is given by:

cE = A (1 − λ) (1 − x1) =
Ar

(23)

µ
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Fig. 2. Ramsey criterion.
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hich is independent of the value of λ, λ ∈ [0, λ1]. Hence,
he government is indifferent between any level of lockdown in
0, λ1].

When agents are altruistic, i.e. α > 0, utility depends not only
n consumption but also on the share of infectives. If λ < λ1,
he opposite long-run effects of the lockdown on consumption
ancel each other as before and as shown in (23). If λ > λ1, then
he lockdown is strong enough and the disease disappears in the
ong run. Welfare at the steady state does no longer depend on
he share of infectives but only on consumption, which is now
ecreasing in λ since: cF = A (1 − λ). Thus, the lockdown level
= λ1 maximizes both consumption and social welfare in the

nterval [λ1, 1]. Summing up, welfare increases in λ when λ < λ1,
nd decreases when λ > λ1, reaching its maximum at λ = λ1.
Next, let us introduce two critical degrees of altruism:

λ ≡ 1 −
x0
x21

×
µθx1 (x1 − x0) (1 − λ)2 + rx0 (λ − λ1) [µ (λ − λ1) − θ ]

(1 − x0) (1 − λ) [µ (λ − λ1) − θ ]2

< 1 (24)

α0 ≡ 1 −
x0
x1

µθ (x1 − x0) + rx0 (θ + µλ1)

(1 − x0) (θ + µλ1)
2 (25)

here x1 is a function of λ, x1 = x1 (λ) according to (12). Notice
hat, when λ = 0, α0 = αλ. Moreover, if 0 ≤ λ < λ1 and x0 < x1,
hen both α0 and αλ remain below 1.

The most sophisticated policy-maker’s problem in (19) is hard
o solve analytically. Nevertheless, policy-makers do need a suf-
iciently robust analytical solution in order to choose the optimal
evel of lockdown, and understand the role of each economic and
pidemic factor. Proposition 4 provides with simple recommen-
ations about the minimum lockdown to implement to avoid a
elfare loss.

roposition 4. Let Assumptions 1–3 hold, and for simplicity, let
s focus on the logarithmic utility function, characterized by ε =

. Consider the optimal lockdown λ∗ which maximizes the welfare
riterion (21).
(1) If α ≥ α0, then the optimal lockdown is positive: λ∗ > 0.
(2) If α ≥ αλ for any λ ∈ [0, λ1), then the optimal lockdown

∗
≥ λ1.

roof. See Appendix D. ■

Proposition 4 reveals the existence of a threshold value for
ltruism, α0, beyond which a lockdown is established. Given its
mportance, we need to understand how the characteristics of
he epidemics will convince policy-makers to confine part of the
opulation. In order to simplify our conclusions, let us assume
hat

> |r − θ | (26)
7

nder Assumption 1, µ > r − θ and, hence, (26) becomes µ >
− r . Under (26), as an intermediate step, we can compute the

ollowing derivatives:
µ

1 − α0

∂ (1 − α0)

∂µ
= 1 −

2µ
µ + θ − r

< 0

r
1 − α0

∂ (1 − α0)

∂r
=

rx0
rx0 + θ (1 − x0)

+
2r

µ + θ − r
> 0

With this in hand, it is straightforward to compute the partial
derivatives of the threshold α0 with respect to the transmissivity
and recovery rates:
∂α0

∂µ
> 0 and

∂α0

∂r
< 0

The threshold increases with transmissibility and it decreases
with the recovery rate. The effects of µ and r are clear. However,
it is R0 which draws the attention of media, public opinion and
public authorities. Hence, let us provide some recommendations
in terms of R0.

While an increase in µ and a decrease in r always entail a rise
in R0 = µ/r , an increase in R0 does not necessarily imply a rise
n µ or a drop in r . To avoid any ambiguity, let us focus on a rise
n R0 due to a simultaneous increase in µ and a decrease in r . In
his case, and with some notational abuse, we have that
∂α0

∂R0
> 0

This means that a higher transmissibility requires a higher de-
ree of altruism in order to impose a positive optimal lockdown.
hus, paradoxically, a higher transmissibility makes the zero lock-
own more likely as efficient policy. Indeed, when the transmis-
ibility of the infectious disease increases, the government faces
ignificant production and consumption losses if a higher share of
he population is locked down to contain the disease. Hardening
he lockdown is welfare-improving only if households become
ore altruistic and care more about infectives.
We turn now to the numerical simulation of this augmented

ass–Koopmans model. As many authors before us have put
orward, to this date there is much uncertainty about the key
arameters of the current COVID-19 pandemic. Obviously, the
ptimal lockdown policy is sensitive to the calibration and our re-
ults should be taken as illustrative. The benchmark case is given
y the quarterly values of three classes of parameters referring to
1) disease: m = n = 0, r = 6, R0 = 2.49; (2) production: A = 1;
and (3) preferences: α = 1/2, ε = 1, θ = 0.01. Appendix H
rovides more details about the calibration.
We vary the main parameters α and r with respect to the

enchmark to capture the impact of altruism and transmissibility
n health and consumption when the policy-maker implements
he optimal lockdown.

Altruism. In the first column of Fig. 3, we compare a selfish
conomy (α = 0) with the benchmark (α = 1/2). In the first
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Fig. 3. Cass–Koopmans criterion.
cenario, the lockdown is 0 and the economy experiences a higher
ndemic steady state. Meanwhile, in the case of an altruistic
conomy, the endemic steady state is lower because of the hard
ockdown (λ∗

= 59.4%). However, this severe lockdown does
ot eradicate the disease. The impact on consumption is the
pposite. In a selfish society, consumption falls from the initial
alue 0.999 to the asymptotic value 0.4016. At the beginning,
elfish agents consume more because of the zero lockdown and
he higher production. However, after a short lapse of time, the
arger number of infectives reduces the labor force significantly,
owering consumption below the level of the altruistic society.

Transmissibility. In the second column of Fig. 3, we explore
he role of the disease recovery rate r , keeping constant the basic
eproduction number R0. Note first that varying r is equivalent
o varying the disease duration 1/r . Then observe that µ = rR0
hanges with r . We compare the effects of a longer duration (one
onth on average, that is r = 3) with those of the benchmark

(two weeks, that is r = 6). In the first case, the transmissibility is
higher than in the benchmark and the economy converges to an
endemic steady state with a larger share of infectives. As above,
the effects on consumption are the opposite: the lighter lockdown
(58.9% < 59.4%) in the case of a longer duration (r = 3) entails

larger consumption at the beginning. When the number of
nfectives becomes burdensome, the economy experiences lower
roduction and consumption than in the benchmark (r = 6). Here
gain, the economy converges towards an endemic steady state
n both scenarios.

. A growth model

The classical growth model is the model by Ramsey (1928),
hich was revisited later by Cass (1965) and Koopmans (1965) by

ntroducing a positive time discounting, θ > 0. We reconsider the
pidemiological dynamics (8) within this infinite-time-horizon
conomic framework.
There are many firms with a common Constant Returns to

cale (CRS) technology: Yj (t) = F
(
Kj (t) , Lj (t)

)
, where Kj (t) and

j (t) are firm j’s demand for capital and labor. Let ρ and w denote
he prices of capital and labor, i.e. the interest rate and the wage
8

respectively. The firm’s profit maximization problem entails that
at equilibrium:

ρ (t) = f ′

(
k̃j (t)

)
(27)

w (t) = f
(
k̃j (t)

)
− k̃j (t) f ′

(
k̃j (t)

)
where k̃j is defined as

k̃j (t) ≡
Kj (t)
Lj (t)

and f
(
k̃j (t)

)
≡ F

(
k̃j (t) , 1

)
are the capital intensity and the (average) productivity per
worker. Notice that (27) implies a common capital intensity
k̃j (t) = k̃ (t) for any firm j.

We introduce the capital share in total income:

ϕ

(
k̃
)

≡

k̃f ′

(
k̃
)

f
(
k̃
) (28)

Observe that positive prices (ρ (t) , w (t) > 0) require that

0 < ϕ

(
k̃
)

< 1 (29)

As in the previous section, only the susceptibles in circulation
work: infectives and confined susceptibles do not work (tele-
working is not allowed here either). Therefore, the aggregate
labor force is given by∑

j

Lj (t) = (1 − λ) S (t) (30)

Aggregate wealth is equal to aggregate capital and hence

N (t) k (t) =

∑
j

Kj (t) =

∑
j

Lj (t)
Kj (t)
Lj (t)

= k̃ (t)
∑

j

Lj (t) = k̃ (t) (1 − λ) S (t)

that is k (t) = k̃ (t) (1 − λ) S (t) /N (t) or, equivalently,

k̃ (t) =
k (t)

(31)

(1 − λ) [1 − x (t)]
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Eq. (31) is the link between capital intensity and individual
wealth.

A key assumption here is that workers are fully insured.
Whether fully employed or not, they receive the same labor
income ω (t). Each worker (susceptible in circulation) supplies
one unit of labor. Then according to (30), aggregate labor income
is given by

ω (t)N (t) = w (t)
∑

j

Lj (t) = w (t) (1 − λ) S (t)

and the value of labor income obtains as a function of the unit
wage and the share of susceptibles allowed to work

ω (t) = w (t) (1 − λ) [1 − x (t)] (32)

In the Ramsey model, production is equal to consumption plus
avings, which yields the following savings mechanism:

˙ (t) ≤ ρ (t) k (t) + ω (t) − δk (t) − c (t) (33)

where k (t) is the individual’s wealth; ω (t) her labor income; c (t)
instantaneous consumption and δ the constant depreciation rate
of capital.

We consider a two-stage optimization program in which both
households and the government take optimal decisions in light of
the evolution of the epidemics. First, given the lockdown degree
λ announced by the public authority, the household maximizes
the utility functional

W (λ) ≡ max
c

∫
∞

0
e−θ tu (G (t)) dt (34)

ubject to the accumulation law for individual wealth given in
33) and where G (t) = G̃ (c (t) , 1 − x (t)). Second, the govern-
ent fixes the optimal lockdown degree taking into account the
onsumer’s solution to program (34). This two-stage optimization
rogram takes into account that the infectious disease is a pure
xternality to the representative household. Indeed, she decides
he optimal consumption path which maximizes her intertem-
oral discounted utility without considering the spread of the
nfectious disease. As mentioned in the introduction, internalizing
he disease renders the optimization problem non-convex. In
hat case, it is not possible to verify that a candidate to optimal
olution meets the Arrow–Mangasarian second-order condition.5
owever, considering the disease as a pure externality implies
hat the representative household only takes into account the law
f accumulation of physical capital. In this case, Assumptions 2
nd 3 ensure the convexity of the optimization program (34) and,
hen, Pontryagin’s maximum principle applies.

For simplicity, let us adopt a Cobb–Douglas description of the
omposite good with a constant degree of altruism α as defined
n (13), that is, G (t) ≡ c (t)1−α [1 − x (t)]α .

Let us start with the household problem. Proposition 5 pro-
vides the dynamic general equilibrium with epidemics

Proposition 5 (General Equilibrium with Epidemics). Under As-
sumptions 1–3, and a Cobb–Douglas composite good with degree of
altruism α, the economic and epidemiological equilibrium dynamics
are driven by the following dynamic system:
ẋ (t)
x (t)

= µ (1 − λ) [x1 (λ) − x (t)] (35)

k̇ (t) = (1 − λ) [1 − x (t)] f
(

k (t)
(1 − λ) [1 − x (t)]

)
− δk (t) − c (t)

5 Alvarez and Argente (2020) have also encountered the same non-convexity
roblem. Noteworthy, Goenka et al. (2014, 2020) use topological arguments to
haracterize the optimal solutions (central planner) of a Ramsey type growth
odel with a SIS disease.
9

ċ (t)
c (t)

=

[
f ′

(
k (t)

(1 − λ) [1 − x (t)]

)
− δ − θ

]
ε (G (t))

1 − α + αε (G (t))
(36)

+ µ (1 − λ) x (t)
x1 (λ) − x (t)

1 − x (t)
α − αε (G (t))

1 − α + αε (G (t))
(37)

where the initial levels x (0) and k (0) are given, and the terminal
value of consumption satisfies the transversality condition

lim
t→∞

e−θ tu′ (G (t)) k (t)
∂G̃
∂c

= 0

x1 (λ) is defined in (12) and G (t) is given by (13).

Proof. See Appendix E. ■

There are two cases in which the Euler equation (36) has a
simple expression. For instance, if the utility function is logarith-
mic, i.e. ε (G (t)) = 1 then (37) becomes

ċ (t)
c (t)

= f ′

(
k (t)

(1 − λ) [1 − x (t)]

)
− δ − θ

The second case arises when agents are selfish and α = 0. Here
he Euler equation (37) boils down to

ċ (t)
c (t)

= ε (G (t))
[
f ′

(
k (t)

(1 − λ) [1 − x (t)]

)
− δ − θ

]
Notice also that (35) is equivalent to

x (t) =
x0x̄

x0 + (x̄ − x0) eµ(λ−λ1)t

The economy inherits two steady states from the epidemio-
ogical dynamics in (6) as explained in the following proposition.

roposition 6 (Steady States). The dynamic system (35)–(37) has
two steady states, an endemic steady state with a positive number
of infectives and a disease-free steady state. The endemic steady state
exists if and only if 0 ≤ λ ≤ λ1.

(i) If 0 ≤ λ < λ1, then x (t) increases (decreases) continuously
from x0 to x1 > 0 if x0 < x1 (x0 > x1). The endemic steady state
(kE, cE) is given by

f ′

(µ

r
kE

)
= δ + θ (38)

cE =

[
δ + θ

ϕ
(

µ

r kE
) − δ

]
kE (39)

where ϕ is given by (28).
(ii) If λ1 ≤ λ ≤ 1, then x (t) decreases from x0 to x̄ = 0 and the

disease-free state (kF , cF ) is given by

f ′

(
kF

1 − λ

)
= δ + θ (40)

cF =

⎡⎣ δ + θ

ϕ

(
kF
1−λ

) − δ

⎤⎦ kF (41)

hen λ = λ1, the endemic and the disease-free steady states
oincide (x1 = 0).

roof. See Appendix F. ■

In case (i), the steady state (kE, cE) is independent of λ in
the interval [0, λ1). However, since x̄ = x1, then G depends on
. Let us explain why. As seen above, a variation in λ affects

both capital and consumption. There is a first positive effect,
because of the higher share of healthy workers. The second effect
is negative because of the lower labor supply induced by the
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tronger lockdown. According to (12), the stock of capital in the
ong run does no longer depend on the lockdown:

′

(
kE

(1 − λ) (1 − x1)

)
= f ′

(µ

r
kE

)
In other terms, the positive effect of the lockdown on (1 − x1)

exactly compensates the negative effect on (1 − λ). The same
happens for the stationary consumption:

cE = (1 − λ) (1 − x1) f
(

kE
(1 − λ) (1 − x1)

)
− δkE

=
r
µ
f
(µ

r
kE

)
− δkE

Summing up, the lockdown has no effect on the endemic
teady state in terms of capital and consumption.
In case (ii) of Proposition 6, differentiating (40) with respect

o λ, we find
λ

kF

∂kF
∂λ

= −
λ

1 − λ
< 0 (42)

hile differentiating (41) and using (42), we obtain that
λ

cF

dcF
dλ

= −
λ

1 − λ
< 0 (43)

Now the lockdown affects the disease-free steady state in
erms of capital and consumption. Indeed, since λ has no effect on
he share of infectives because the disease has been eradicated,
he only effect at work is negative: the stronger the lockdown, the
ower the share of workers in circulation and the labor supply,
nd, finally, the lower the levels of production and consumption,
nd the capital stock.
Example. In the case of a Cobb–Douglas production function(
Kj, Lj

)
= Kϕ

j , L1−ϕ

j , we obtain f
(
k̃
)

= Ak̃ϕ and the steady states
become the following.

(i) Endemic:

kE =
r
µ

(
δ + θ

Aϕ

) 1
ϕ−1

=
1
R0

(
Aϕ

δ + θ

) 1
1−ϕ

and

E =

(
δ + θ

ϕ
− δ

)
kE

(ii) Disease-free:

F = (1 − λ)

(
Aϕ

δ + θ

) 1
1−ϕ

and cF =

(
δ + θ

ϕ
− δ

)
kF

Next, let us solve the second stage of our strategy considering
he government’s program, i.e. maxλ∈[0,1] W (λ). As with the Cass–
oopmans criterion in Section 4.2, we examine two different
ines of action. In the first, the policy maker adopts a naive
pproach and maximizes welfare at the steady state to find the
ptimal lockdown in the long run, λS . In the second, welfare is
aximized along the transition to find the optimal lockdown λ∗.
iven the complexity of this second problem, we cannot provide
ith analytical results and we shall resort to numerical exercises
o highlight the properties of the optimal lockdown.

In the naive approach, the welfare functional is evaluated at
he steady state and it is given by

¯ (λ) ≡

∫
∞

0
e−θ tu

(
Ḡ (λ)

)
dt =

u
(
Ḡ (λ)

)
θ

(44)

roposition 7 (Optimal Lockdown in the Long Run). Let Assump-
ions 1–3 hold. The optimal lockdown λS maximizes welfare at the
steady state and it verifies:

(1) If agents are selfish, α = 0, then there is an interval of optimal
lockdown values: {λ } = [0, λ ]. In this case, if 0 ≤ λ < λ , then
S 1 S 1
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the economy converges to an endemic steady state x̄ = x1 > 0. If
λS = λ1, then the economy converges to the disease free steady state
x̄ = x1 = 0.

(2) If agents are altruist, α > 0, then the optimal lockdown is
λS = λ1. In this case, the economy converges to x̄ = 0.

Proof. See Appendix G. ■

It goes without saying that solution (54) is no longer neces-
sarily optimal if the transition G (t) is taken into account instead
of the steady state Ḡ to compute the utility functional (34).

Note that, when Propositions 3 and 7 are compared, we find
the same results. The introduction of capital accumulation does
not change the picture and the same policy recommendations
hold.

To illustrate the impact of the optimal lockdown λ∗ on growth,
we provide a numerical analysis taking into account the welfare
maximization along the equilibrium transition.

Our exercises aim at underlining two issues. First, the pure
effect of the epidemics on economic decisions. Here, we will only
explore the effect of the duration of the epidemics on the optimal
lockdown and its economic consequences. Here, as explained in
the previous sections and in Appendix H, our calibration describes
the 2020 COVID19 epidemics, using the best available quarterly
data. As a result, we do not let vary R0, just the less certain
parameter, r . Since our modeling is quite general, we could also
explore other directions in which the epidemics affect economic
decisions. Second, our results emphasize the important role of
preferences and its impact on both health and production. More
precisely, as in the Cass–Koopmans examples, we study the role
of altruism.

Let us present the benchmark and compare different scenarios
varying α (altruism) and r (transmissibility). The first column of
Fig. 4 describes the impact of α, and the second, the effects of r .

The benchmark is given by the quarterly values of three classes
of parameters referring to (1) disease: m = n = 0, r = 6,
R0 = 2.49; (2) production: A = 1, δ = 0.012741, ϕ = 1/3, k0 = 1;
and (3) preferences: α = 1/2, ε = 1, θ = 0.01.

Altruism. Let us compare the selfish economy (α = 0) with
the benchmark (α = 1/2). When α = 0, the optimal lockdown
is 0 and the share of infectives converges to x1 = 59.8%. In the
altruistic economy, the steady state remains endemic even if the
lockdown is stronger (59.4%). In particular, since λ∗ < λ1, the
disease is not eradicated and the number of infectives converges
towards x1 = 1.08%. In the long run, the labor force will be
reduced to a 40%. In both scenarios, k0 > kE = 22.537, which
induces capital and consumption to decrease in the long run
towards the steady state. Observe that initial consumption in the
selfish economy is much higher. Indeed, before the sudden rise
of infectives, agents enjoy the zero lockdown by producing and
consuming more. Then, the dramatic rise in the share of infectives
reduces significantly the labor force and, as a result, capital and
consumption fall below the altruistic benchmark levels.

Transmissibility. In the second column of Fig. 4, we consider
the impact of r . As in Cass–Koopmans exercise, R0 is kept constant
so that µ = rR0 varies with r . When transmissibility is higher
because of the longer duration of illness (r = 3), the share of
infectives is larger in the short and long run. Dynamics are qual-
itatively similar to those of the Cass–Koopmans criterion (second
column of Fig. 3). Nevertheless, there are important differences
emanating from time discounting. The future matters less and
consumption decreases in the case of a longer duration (r = 3)
and in the benchmark (r = 6). In both cases, the decrease in
capital from k0 to kE = 22. 537 is also coherent with the decline in
consumption towards the endemic value (cE = 1. 250 4) because
of the slowdown in production. The lower lockdown in the case
of longer duration (58.9% < 59.4%) also explains why capital and

consumption are higher than in the benchmark (r = 6).
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Fig. 4. Growth model.
x

6. Conclusion

Most of the recent literature considering economies under the
threat of an epidemic have introduced a SIR epidemiological hy-
pothesis in dynamic general equilibrium models. We have made
instead a SIS assumption in an infinite-horizon market economy
with and without capital accumulation. The SIS approach makes
sense for the recent COVID-19 pandemics as long as mortality
remains relatively low, and the disease does not confer complete
nor durable immunity.

Additionally, this paper considers altruistic agents concerned
by the share of infectives in total population and studies the
impact of altruism on equilibrium trajectories. In the model with-
out capital accumulation, the government maximizes the social
welfare by fixing once and for all the degree of the lockdown. We
have computed the optimal lockdown in the case of utilitarian
targets using: (1) a Ramsey criterion and (2) a Cass–Koopmans
criterion. If agents are selfish, the zero lockdown is efficient, while
a positive lockdown is recommended beyond a critical degree
of altruism. Moreover, the lockdown intensity increases in the
degree of altruism. We provide also the optimal evolution of the
economy to the disease-free or to the endemic steady state in the
case of positive or nil lockdown.

In the model with capital accumulation, we have found similar
results in analytical and numerical terms, confirming the robust-
ness of our conclusions. Noteworthy, we find an upper bound for
the lockdown not to trespass. According to our simulations, this
11
threshold for λ∗ is λ1 ≈ 60% implying that locking down more
than 60% of the labor force forever is sub-optimal.
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Appendix A. Proof of Proposition 1

The solution to Eq. (6) is given by (8). Using (8), we can rewrite
˙ as

ẋ (t) = (1 − λ) (x̄ − x0)
µx0x̄2eµ(λ−λ1)t[

x0 + (x̄ − x0) eµ(λ−λ1)t
]2 > 0

ẋ (t) > 0 ⇔ (1 − λ) (x̄ − x0) > 0 (45)

Setting ẋ (t) = 0 in (6), it is straightforward to prove that there
are two stationary states: x̄ = 0 and x̄ = x1. Since the share of
infected lies between 0 and 1, x (t) ∈ [0, 1], an endemic steady
state x̄ = x1 = 1 − (n + r) /[µ (λ2 − λ)] ≥ 0 exists if and only
if λ ≤ λ1 = 1 − (m + n + r) /µ. Note that when λ = λ1, the
endemic and the disease free steady state coincide (x̄ = 0).

According to the solution in (8) and using (45), we have the
following dynamics. If x0 = 0, then the economy is disease-free

forever. If on the contrary x0 > 0, then we have five cases.
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(i) If 0 ≤ λ < λ1, then the endemic steady state x1 exists
and 0 < x1 < 1. According to (45), ẋ (t) > 0 if and only if
x0 < x̄ = x1. Indeed, if x0 < x1 (x0 > x1), then x (t) increases
(decreases) continuously from x0 to x1.

(ii) If λ = λ1, then, according to (6), we have that ẋ (t) =

− (n + r) x (t)2. Then, x (t) decreases continuously from x0 to x̄ =

1 = 0.
(iii) If λ1 < λ < λ2, then x1 < 0 < x0 and x (t) < 1. Therefore,

x (t) decreases continuously from x0 to x̄ = 0.
(iv) If λ = λ2, then substituting λ = λ2 in (6), we obtain that

ẋ (t) = − (n + r) x (t), with solution x (t) = x0e−(n+r)t . Thus, x (t)
decreases continuously from x0 to x̄ = 0.

(v) If λ2 < λ ≤ 1, then x (t) < 1 < x1. Therefore, x (t)
decreases continuously from x0 to x̄ = 0.

Case (i) corresponds to the disease-free steady state of case
(1) in Proposition 1. Cases (ii), (iii), (iv) and (v) generate the
same qualitative dynamics and note that they correspond to λ ∈

{λ2} ∪ (λ1, λ2) ∪ {λ2} ∪ (λ2, 1] = [λ1, 1]. In all these cases, x (t)
decreases continuously from x0 to x∗

= 0, which proves case
(2) in Proposition 1. ■

Appendix B. Proof of Proposition 2

In order to prove Proposition 2, we maximize the welfare
functional (19) in four cases: (i) 0 ≤ λ < λ1, (ii) λ = λ1,
(iii) λ1 < λ < 1, (iv) λ = 1.

(i) If 0 ≤ λ < λ1, then we know from Proposition 1 that the
economy converges to the endemic steady state x̄ = x1 ∈ (0, 1).
Replacing (8) in (19) and solving the resulting integral, we find
the following expression for welfare

W (λ) =
g (A (1 − λ))

µ (1 − λ)
ln

x1 (λ)

x0
(46)

W (λ) is a differentiable function on [0, 1). Indeed, note that

x1 (λ) = 1 −
r

µ (λ2 − λ)
(47)

s differentiable for any λ ∈ [0, 1) and, according to Assumption
, g(A(1 − λ)) = G̃(A(1 − λ), 1) is also differentiable since G̃ is
wice differentiable. Then, using (12) and (47), we compute the
erivative of W (λ) on [0, 1):

′ (λ) =
g (A (1 − λ))

µ (1 − λ)2

[
α (A (1 − λ)) ln

x1 (λ)

x0
−

1 − x1 (λ)

x1 (λ)

]
Hence

W ′ (λ) < 0 ⇔ α (A (1 − λ)) ln
x1 (λ)

x0
<

1 − x1 (λ)

x1 (λ)

In what follows, let us focus on the case of a constant degree
f altruism, i.e. α (A (1 − λ)) = α.
(1) If α = 0, agents show no empathy. Here W ′ (λ) < 0

ecause λ < λ1. Then,

rg max
λ∈[0,λ1)

W (λ) = 0

(2) If α > 0, agents are empathetic and

′ (λ) < 0 ⇔ x > x (λ) e−
1−x1(λ)

αx1(λ) ≡ φ (λ) (48)
0 1 m

12
We observe that φ is decreasing in λ. Indeed, we can compute
φ′/φ:

φ′ (λ)

φ (λ)
=

x′

1 (λ)

x1 (λ)

1 + αx1 (λ)

αx1 (λ)
< 0

because x′

1 (λ) < 0.
Let λ∗ (α) = φ−1 (x0) be the unique solution of x0 = φ (λ).

Then,

λ < λ∗ (α) ⇔ φ (λ) > φ
(
λ∗ (α)

)
= x0 ⇔ W ′ (λ) > 0

By (48), W ′ (λ) > 0 when x0 < φ(λ). Therefore, W (λ) in-
creases for λ ∈ [0, λ∗(α)) ⊂ [0, λ1) and as a result, λ∗(α) =

argmaxλ∈[0,λ1) W (λ).
Note that x0 = φ (λ∗ (α)) < x1 (λ∗ (α)). According to (46), if

x0 < x1 (λ) for a given λ ∈ [0, 1), then [ln x1 (λ) /x0] > 0 which
implies that W (λ) > 0. In particular, since x0 < x1(λ) we have
that W (λ∗ (α)) > 0.

Finally, let us prove that the set of values α ∈ (0, 1) such that
λ∗ (α) ∈ (0, λ1) is nonempty. Solving x0 = φ (λ) for α, we obtain

α
(
λ∗

)
=

1 − x1 (λ∗)

x1 (λ∗)

[
ln

x1 (λ∗)

x0

]−1

with α′ (λ∗) > 0. We have just proven that

0 < x1
(
λ∗

)
e
−

1−x1(λ∗)
αx1(λ∗)

Then, we can write that for any λ∗
∈ (0, λ1),

α
(
λ∗

)
∈ (0, 1) ⇔ x0 < x1

(
λ∗

)
e
−

1−x1(λ∗)
x1(λ∗)

=
µ (1 − λ∗) − r

µ (1 − λ∗)
e−

r
µ(1−λ∗)−r

However, at λ∗, since αx1 (λ∗) < x1 (λ∗), and −1/[αx1 (λ∗)] <
−1/[x1 (λ∗)], it is also true that

x0 = x1
(
λ∗

)
e
−

1−x1(λ∗)
αx1(λ∗) < x1

(
λ∗

)
e
−

1−x1(λ∗)
x1(λ∗)

Next, let us study cases (ii)-(iv), corresponding to λ ≥ λ1. If
λ1 ≤ λ ≤ 1, then the economy converges to the disease-free
steady state x̄ = 0. Then, according to (19),

(λ) = −g (A (1 − λ))

∫
∞

0
x (t) dt ≤ 0 (49)

ecause g (A (1 − λ)) > 0 for any λ, and x (t) > 0 for any t .
Knowing that welfare is negative for λ ≥ λ1, let us distinguish
the cases λ = λ1 and λ > λ1:

(ii) Let λ = λ1. Then, ẋ (t) = −rx (t)2 and its solution is

x (t) =
x0

1 + x0rt
(50)

ccording to (50), x(t) decreases continuously from x0 to x̄ = x1 =

. Then, replacing (50) in (49), we obtain the value of welfare at
= λ1:

(λ1) = −
g (A (1 − λ1))

r
ln lim

t→∞
(1 + x0rt) = −∞ < 0

(iii) Let λ1 < λ < 1. Replacing x(t) using (8) in our welfare
efinition in (49) and solving the resulting integral, we obtain

(λ) =
x1 (λ) g (A (1 − λ))

µ (λ − λ1)
ln

x1 (λ) − x0
x1 (λ)

< 0

because λ > λ1 and because x1 (λ) < 0 when λ > λ1.
otice that, according to (12), limλ→1− x1 (λ) = −∞ and, thus,
imλ→1− W (λ) = −x0g (0) /r = 0.

(iv) Let λ = 1. Then, g (A (1 − λ)) = g (0) = 0 and W (λ) = 0.
Summing up, in all the above cases we have proven that

ax W λ = 0.
λ∈[λ1,1] ( )
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We can prove now Proposition 2:
(1) Let α = 0. We know that when α = 0,

argmaxλ∈[0,λ1) W (λ) = 0. Moreover, if x0 < 1 − r/µ, then

W (0) =
g (A)

µ
ln

1 −
r
µ

x0
> 0 = max

λ∈[λ1,1]
W (λ)

Then, λ∗ (0) = argmaxλ∈[0,1) W (λ) = 0 and the optimal solution
is the zero lockdown λ∗ (0) = 0.

(2) Next, let α > 0. We know that for any λ∗
∈ (0, λ1)

here always exists a degree of altruism α ∈ (0, 1) such that
∗

= argmaxλ∈[0,λ1) W (λ). Moreover, since W (λ∗) > 0 =

axλ∈[λ1,1] W (λ), we have also λ∗ (α) = argmaxλ∈[0,1] W (λ) ∈

0, λ1).
Finally, we observe that, since α′ (λ∗) > 0, then λ∗′ (α) > 0:

he optimal level of lockdown increases with altruism. ■

ppendix C. Proof of Proposition 3

Reconsider (22):

¯ (λ) =

∫
∞

0
e−θ tu

(
Ḡ (λ)

)
dt = u

(
Ḡ (λ)

) ∫
∞

0
e−θ tdt

=
u
(
Ḡ (λ)

)
θ

=
u (g (A (1 − λ)) (1 − x̄))

θ
(51)

Depending on the value of λ, we distinguish two cases:
(i) If 0 ≤ λ < λ1, then

lim
t→∞

x (t) = lim
t→∞

x0x1
x0 + (x1 − x0) eµ(λ−λ1)t

=
x1x0
x0

= x1 = 1 −
r

µ (1 − λ)
> 0

otice that when λ = λ1, then x1 = 0. Then, we can use (51) to
write W̄ (λ) as

W̄ (λ) =
1
θ
u
(

r
µ

g (A (1 − λ))

1 − λ

)
(52)

nd

¯ ′ (λ) = α (A (1 − λ))
r
µ

u′
(
Ḡ
)

θ

g (A (1 − λ))

(1 − λ)2
≥ 0

Then if α (A (1 − λ)) = 0, then W̄ ′ (λ) = 0; and if α (A (1 − λ))

0, then W̄ ′ (λ) > 0.
(ii) If λ1 < λ ≤ 1, then since λ − λ1 > 0,

lim
t→∞

x (t) = lim
t→∞

x0x1
x0 + (x1 − x0) eµ(λ−λ1)t = 0

Since in this case x̄ = 0, we have proven that limt→∞ x (t) = x̄
when λ ∈ (λ1, 1]. In this case, (51) becomes

W̄ (λ) =
u (g (A (1 − λ)))

θ

and W̄ ′ (λ) < 0.
We notice that W̄ (λ) is continuous at λ = λ1 since:

lim
→λ±

1

W̄ (λ) =
u (g (A (1 − λ1)))

θ

We can now prove the statements in each case of
roposition 3:
(1) Let α (A (1 − λ)) = 0. We have proven that in this case

¯ ′ (λ) = 0 if 0 ≤ λ < λ1, and W̄ ′ (λ) < 0 if λ1 < λ ≤ 1. Since
¯ (λ) is continuous at λ = λ1, then

max W̄ (λ)
u (g (A (1 − λ1)))
λ∈[0,1] θ

13
which is independent of λ, meaning that actually

arg max
λ∈[0,1]

W̄ (λ) ≡ λS ∈ [0, λ1]

that is, any value of λS ∈ [0, λ1] yields the maximum of the
elfare criterion (51).
Additionally, according to (8), if 0 ≤ λS < λ1, then the

conomy converges to x̄ = x1 > 0. On the contrary, if λS = λ1,
hen the economy converges to x̄ = 0.

(2) Let now α (A (1 − λ)) > 0. We know that W̄ ′ (λ) > 0 if
≤ λ < λ1, and W̄ ′ (λ) < 0 if λ1 < λ ≤ 1. Then W̄ increases
ntil λ1 and decreases afterwards. Since W̄ (λ) is continuous at
= λ1, then W̄ (λ) achieves a maximum at λ1:

S ≡ arg max
λ∈[0,1]

W̄ (λ) = λ1

Furthermore, according to (8), the economy converges to
¯ = 0. ■

ppendix D. Proof of Proposition 4

Replacing (13) and (17) in (21) and using a logarithmic utility,
e obtain the following expression for welfare

(λ) =

∫
∞

0
e−θ t ln

(
[A (1 − λ)]1−α [1 − x (t)]

)
dt

=
1 − α

θ
ln [A (1 − λ)] +

∫
∞

0
e−θ t ln [1 − x (t)] dt

Since W is differentiable, we compute its derivative:

W ′ (λ) = −
1 − α

θ

1
1 − λ

+

∫
∞

0
e−θ t ∂

∂λ
ln [1 − x (t)] dt (53)

Using (8), we replace x(t) in the logarithm, so that we can
compute ∂ ln [1 − x (t)] /∂λ. According to (12), we shall use that,

x′

1 (λ) = −
r

µ (1 − λ)2

to obtain
∂

∂λ
ln [1 − x (t)] =

∂

∂λ
ln

[
1 −

x0x1
x0 + (x1 − x0) eµ(λ−λ1)t

]
=

∂

∂λ

(
ln

[
x0 + (x1 − x0) eµ(λ−λ1)t

− x0x1
]

− ln
[
x0 + (x1 − x0) eµ(λ−λ1)t])

=
x′

1 (λ) eµ(λ−λ1)t + (x1 − x0) µteµ(λ−λ1)t − x0x′

1 (λ)

x0 + (x1 − x0) eµ(λ−λ1)t − x0x1

−
x′

1 (λ) eµ(λ−λ1)t + (x1 − x0) µteµ(λ−λ1)t

x0 + (x1 − x0) eµ(λ−λ1)t

= x0
x1 (x1 − x0) µteµ(λ−λ1)t − x0x′

1 (λ)
[
1 − eµ(λ−λ1)t

][
x0 + (x1 − x0) eµ(λ−λ1)t − x0x1

] [
x0 + (x1 − x0) eµ(λ−λ1)t

]
= x0

x1 (x1 − x0) µteµ(λ−λ1)t +
r

µ(1−λ)2
x0

[
1 − eµ(λ−λ1)t

][
x0 + (x1 − x0) eµ(λ−λ1)t − x0x1

] [
x0 + (x1 − x0) eµ(λ−λ1)t

]
(54)

Focusing on the denominator, and since λ < λ1 and x0 < x1,
e have that[
x0 + (x1 − x0) eµ(λ−λ1)t

− x0x1
] [

x0 + (x1 − x0) eµ(λ−λ1)t]
< (1 − x0) x21

The numerator in (54) is positive, i.e.

1 (x1 − x0) µteµ(λ−λ1)t
+

r
2 x0

[
1 − eµ(λ−λ1)t] > 0
µ (1 − λ)
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hen, we can conclude that the derivative ∂ ln [1 − x (t)] /∂λ is
ositive:

∂

∂λ
ln [1 − x (t)]

> x0
x1 (x1 − x0) µteµ(λ−λ1)t +

r
µ(1−λ)2

x0
[
1 − eµ(λ−λ1)t

]
(1 − x0) x21

> 0

Reconsidering (53), and using that∫
∞

0
e[µ(λ−λ1)−θ ]tdt = −

1
µ (λ − λ1) − θ

∞

0
te[µ(λ−λ1)−θ ]tdt =

1
[µ (λ − λ1) − θ ]2

e can write that
′ (λ)

= −
1 − α

θ

1
1 − λ

+

∫
∞

0
e−θ t ∂

∂λ
ln [1 − x (t)] dt

> −
1 − α

θ

1
1 − λ

+

∫
∞

0
e−θ tx0

x1 (x1−x0) µteµ(λ−λ1)t +
r

µ(1−λ)2
x0

[
1−eµ(λ−λ1)t

]
(1 − x0) x21

dt

= −
1 − α

θ

1
1 − λ

+
x0

(1 − x0) x21

∗

(
x1 (x1 − x0) µ

∫
∞

0
te[µ(λ−λ1)−θ ]tdt

+
rx0

µ (1 − λ)2

[∫
∞

0
e−θ tdt −

∫
∞

0
e[µ(λ−λ1)−θ ]tdt

])
= −

1 − α

θ

1
1 − λ

+
x0

(1 − x0) x21

×

(
x1 (x1 − x0) µ

[µ (λ − λ1) − θ ]2
+

rx0
µ (1 − λ)2

[
1
θ

+
1

µ (λ − λ1) − θ

])
= −

1 − α

θ

1
1 − λ

+
x0

(1 − x0) x21

×
µθx1 (x1 − x0) (1 − λ)2 + rx0 (λ − λ1) [µ (λ − λ1) − θ ]

θ (1 − λ)2 [µ (λ − λ1) − θ ]2
(55)

Therefore, W ′ (λ) > 0 if expression (55) is non-negative. This
is equivalent to saying that W ′ (0) > 0 if α ≥ αλ, where αλ is
efined in (25). Indeed, when λ = 0, x1 (0) = λ1 = 1− r/µ. ■

ppendix E. Proof of Proposition 5

We apply the Pontryagin’s maximum principle to solve the
ptimization problem of maximizing (34) subject to the law
f accumulation of capital in (33).6 The associated Hamiltonian
unction is the following

(h, k, c, t) ≡ e−θ tu
(
G̃ (c, 1 − x)

)
+ h (ρk + ω − δk − c)

Note that ω is defined in (32), x in (8), and h is the multiplier
associated to the dynamic constraint (33). The first-order deriva-
tives of the Hamiltonian function with respect to h, k and c are

6 For further details, see, for instance, Seierstad and Sydsaeter (1987, Theorem
2, p. 234) or, in a more applied framework, Acemoglu (2009, Theorem 7.13, p.
54).
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the following

∂H
∂h

= ρk + ω − δk − c

∂H
∂k

= h (ρ − δ)

∂H
∂c

= e−θ tu′ (G)
∂G̃
∂c

− h

The Pontryagin necessary optimal conditions obtain by setting

∂H
∂h

= k̇,
∂H
∂k

= −ḣ and
∂H
∂c

= 0

plus the transversality condition limt→∞ h (t) k (t) = 0. Hence,
the set of necessary conditions associated to our problem is

k̇ = ρk + ω − δk − c

ḣ = h (ρ − δ) (56)

h = e−θ tu′ (G)
∂G̃
∂c

(57)

As assumed in Proposition 5, let us consider the Cobb–Douglas
composite good with degree of altruism α: G̃ (c, 1 − x) =

c1−α (1 − x)α .
Taking the logarithm of the optimal condition for h in (57), and

computing its derivative with respect to time and using (56), we
find the Euler equation:

ċ (t)
c (t)

=
[ρ (t) − δ − θ ] ε (G (t))

1 − α + αε (G (t))

+
α − αε (G (t))

1 − α + αε (G (t))
x (t)

1 − x (t)
ẋ (t)
x (t)

(58)

where the elasticity of intertemporal substitution ε (G (t)) is
given by (15).

Before finding the ultimate set of optimal conditions, let us
rewrite the dynamics of the epidemics using (6) with n = m = 0.
Knowing that

x1 = 1 −
r

µ(1 − λ)
=

µ(1 − λ) − r
µ(1 − λ)

hen, we can write ẋ/x as

ẋ
x

= µ (1 − λ) (1 − x) − r = µ (1 − λ) − r − µ (1 − λ) x

= µ (1 − λ) x1 − µ (1 − λ) x = µ (1 − λ) (x1 − x)

hat is, we obtain the dynamics in (35).
Replacing this expression for ẋ/x in (58), we get that

ċ (t)
c (t)

=
[ρ (t) − δ − θ ] ε (G (t))

1 − α + αε (G (t))

+ µ (1 − λ) x (t)
α − αε (G (t))

1 − α + αε (G (t))
x1 (λ) − x (t)

1 − x (t)

At equilibrium, (33) holds with equality and prices are given
by their marginal product

ρ (t) = f ′

(
k̃ (t)

)
(59)

w (t) = f
(
k̃ (t)

)
− k̃ (t) f ′

(
k̃ (t)

)
(60)

Replacing (31), (32), (59) and (60) in (33) with equality, we
find the equilibrium wealth accumulation (36).

Therefore, the dynamic system is given by (35), (36), (37) and
the transversality condition

lim
t→∞

h (t) k (t) = lim
t→∞

e−θ tu′(G (t))
∂G̃
∂c

k (t) = 0 ■
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ppendix F. Proof of Proposition 6

We compute the steady states for the epidemics using (35).
ccording to Proposition 1, the endemic steady state exists if and
nly if 0 ≤ λ ≤ λ1. Hence, we can distinguish two cases. In the

first case, 0 ≤ λ < λ1 and there are two steady states. In the
second, when λ1 ≤ λ ≤ 1, the economy reaches the disease free
state. Let us analyze each of these cases.

(i) If 0 ≤ λ < λ1, then, according to (8), x (t) increases
(decreases) continuously from x0 to x1 > 0, if x0 < x1 (x0 > x1).
At the endemic steady state x̄ = x1. Then, using the definition of
x1 in (12) and imposing in Eqs. (36) and (37) that at the steady
state k̇(t) = 0 and ċ(t) = 0, we have

0 = k̇ =
r
µ
f
(
k
µ

r

)
− δk − c

0 =
ċ
c

=
ε (G)

1 − α + αε (G)

[
f ′

(
k
µ

r

)
− δ − θ

]
hat is, results in (38) and (39) obtain.

(ii) If λ1 ≤ λ ≤ 1, then, according to (6), x (t) decreases
continuously from x0 to x̄ = 0. In this case, we obtain the
modified golden rule in (40) and (41) imposing that x̄ = 0 in
Eqs. (36) and (37), that is

0 = k̇ = (1 − λ) f
(

k
1 − λ

)
− δk − c

=
ċ
c

=
ε (G)

1 − α + αε (G)

[
f ′

(
k

1 − λ

)
− δ − θ

]
■

Appendix G. Proof of Proposition 7

Let us consider the welfare function in (44). Since both u and
˜ are differentiable, W̄ is differentiable and we can compute its
erivative. In this proof, and for each case, we will first evaluate
¯ (λ) using (44), and then compute its derivative in order to
educe the value of λS which maximizes welfare.
(i) if 0 ≤ λ < λ1, the economy converges to the endemic

teady state x̄ = x1 > 0. (12) and (44) give the welfare function
t the steady state:

¯ (λ) =
u
(
c1−α
E [1 − x1 (λ)]α

)
θ

=
1
θ
u
(
c1−α
E

[
r

µ (1 − λ)

]α)
(61)

If α = 0, then W̄ (λ) = u (cE) /θ , which is constant because cE
does not depend on λ. As a result, W̄ ′ (λ) = 0 for all λ ∈ [0, λ1].

If on the contrary α > 0, then, using (61), we find W̄ ′ (λ) > 0.
(ii) If λ1 ≤ λ ≤ 1, the steady state is disease-free (x̄ = 0) and

using (41) and (44) we get the following expression for W̄ (λ):

W̄ (λ) =
u (GF (λ))

θ
=

u
(
c1−α
F

)
θ

=

u
((

(1 − λ)

[
f
(
k̃F (λ)

)
− δk̃F (λ)

])1−α
)

θ

According to (40), f ′

(
k̃F (λ)

)
= δ + θ and, thus, k̃′

F (λ) = 0.
herefore this time

¯ ′ (λ) = −
1 − α

θ

GF (λ) u′ (GF (λ))

1 − λ
< 0

Note that W̄ (λ) is continuous at λ = λ1 since:

lim
±
W̄ (λ) =

u
(
c1−α
E

)

→λ1

θ
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With this characterization of W̄ ′ (λ), let us find the optimal
value of λS in each case defined in Proposition 7:

(1) Let α = 0. We know that W̄ ′ (λ) = 0 if 0 ≤ λ < λ1
nd W̄ ′ (λ) < 0 if λ1 < λ ≤ 1. Then when λ ∈ [0, λ1), W̄ (λ) is
onstant and bigger than when λ ≥ λ1. Since W̄ (λ) is continuous
t λ = λ1, we have that the maximum value of welfare is

max
λ∈[0,1]

W̄ (λ) =
u
(
c1−α
E

)
θ

arg max
λ∈[0,1]

W̄ (λ) ≡ {λS} = [0, λ1]

According to (8), if 0 ≤ λS < λ1, then the economy converges
o x̄ = x1 > 0, while, if λS = λ1, the economy converges to x̄ = 0.

(2) Let α > 0. We have proven that W̄ ′ (λ) > 0 if 0 ≤ λ < λ1
and W̄ ′ (λ) < 0 if λ1 < λ ≤ 1. Since W̄ (λ) is continuous at
λ = λ1, we have this time that

λS ≡ arg max
λ∈[0,1]

W̄ (λ) = λ1

Moreover, using (8) we know that the economy converges
towards x̄ = 0. ■

Appendix H. Calibration

We provide in this appendix the benchmark values we have
considered in all the numerical exercises throughout the paper.
There are three classes of parameters referring to: (1) disease,
(2) production, (3) preferences.

(1) Disease-specific parameters. Using data from the CIA
(2020), we compute the world quarterly crude death rate (CIA,
2020):

m = 1 − (1 − 0.0077)
1
4 = 0.0019306 (62)

And with data from the UN (2020), the world quarterly crude
natality rate (UN, 2020):

n = 1 − (1 − 0.0185)
1
4 = 0.0046574 (63)

The values of m and n given in (62) and (63) are used to
plot Fig. 1 in Section 2 (epidemiological base). In Section 3 to
5 (economic models), we set m = n = 0 to obtain a tractable
ynamic system. As a matter of fact, they are so low that such
pproximation does not bias our results significantly.
According to (11), the average duration depends on the re-

overy rate: D = 1/r . Since the COVID-19 lasts on average two
eeks, we set r = 6.
The last parameter in this block is R0, the basic reproduc-

ion number. In order to calibrate µ, we use the most recent
stimations for R0 made by the research team MIVEGEC/ETE at
ontpellier University. Using data collected in France from the
nd of February (beginning of the epidemic) until mid-March
beginning of the lockdown), they obtain R0 = 2.49. Considering
he benchmark recovery rate r = 6 corresponding to a duration
f two weeks (D = 1/6), we obtain in the benchmark µ = rR0 =

∗ 2.49 = 14. 94.
(2) Production-specific parameters.
We normalize the Total Factor Productivity and the initial

apital to one: A = k0 = 1.
Barro and Sala-i Martin (2004) and Barro et al. (1995) consider

n annual depreciation rate of δ = 0.05. Here, we fix a quarterly
= 0.012741 to capture a 5% loss in capital every year: δ =

− (1 − 0.05)1/4 = 0.012741.
Following Barro and Sala-i Martin (2004) and Acemoglu (2009),

e fix the share of physical capital in total income is usually fixed
o ϕ

(
k̃
)

= 1/3.
(3) Preference-specific parameters. There are three impor-

ant parameters shaping individuals’ preferences: the altruism
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d
egree, the elasticity of intertemporal substitution ε, and time
preference.

Regarding ε, there is no clear consensus in the profession.
Campbell (1999) suggests an interval of low values: ε ∈ (0.2, 0.6),
while Barro et al. (1995) fix ε = 2. Here, we fix ε = 1,
corresponding to a logarithmic utility. In this case, income and
substitution effects are balanced.

α will take values in [0, 1) in the exercises aiming at describing
the role of altruism. In particular, we compare a selfish economy
(α = 0) with the benchmark (α = 1/2).

Finally, following Stern and Stern (2007), the quarterly time
discount rate is set to θ = 0.01.

References

Acemoglu, D., 2009. Introduction To Modern Economic Growth. Princeton
University Press, New Jersey.

Acemoglu, D., Chernozhukov, I., Werning, M.D., Whinston, V., 2020. A multi-risk
SIR model with optimally targeted lockdown. NBER Working Paper 27102.

Alvarez, F.E., Argente, D., 2020. A simple planning problem for COVID-19
lockdown. NBER Working Paper 26981.

Atkeson, A., 2020. What will be the economic impact of COVID-19 in the US?
Rough estimates of disease scenarios. NBER Working Paper 26867.

Barrett, S., Hoel, M., 2007. Optimal disease eradication. Environ. Develop.
Econom. 12, 627–652.

Barro, R.J., Mankiw, G., i Martin, X. Sala, 1995. Capital mobility in neoclassical
models of growth. Amer. Econ. Rev. 85, 103–115.

Barro, R.J., Sala-i Martin, X., 2004. Economic Growth, second ed. MIT Press,
Cambridge, Massachusetts.

Bosi, S., Demarchelier, D., 2018. Pollution and infectious diseases. Int. J. Econ.
Theory 14, 351–372.

Campbell, J., 1999. Asset prices, consumption and the business cycle. In: Tay-
lor, J.B., Woodford, M. (Eds.), HandBook of Macroeconomics. North-Holland,
Amsterdam, pp. 1231–1303.

Cass, D., 1965. Optimum growth in an aggregative model of capital accumulation.
Rev. Econom. Stud. 32, 233–240.

Central Intelligence Agency, 2020. People and society. In: CIA World Factbook.
Eichenbaum, M., Rebelo, S., 2020. The macroeconomics of epidemics. NBER

Working Paper 26882.
Ferguson, N.M., Laydon, G., Nedjati-Gilani, N., Imai, K., Ainslie, M., Baguelin, S.,

Bhatia, A., Boonyasiri, Z., Cucunub, G., Cuomo-Dannenburg, A., Dighe, D.,
2020. Impact of non-pharmaceutical interventions (NPIs) to reduce COVID-19
mortality and healthcare demand. Imperial college COVID-19 response team.
16
Gersovitz, M., Hammer, J.S., 2004. The economical control of infectious diseases.
Econom. J. 114, 1–27.

Goenka, A., Liu, L., 2012. Infectious diseases and endogenous fluctuations.
Econom. Theory 50, 125–149.

Goenka, A., Liu, L., Nguyen, M.-H., 2014. Infectious diseases and economic
growth. J. Math. Econom. 50, 34–53.

Goenka, A., Liu, L., Nguyen, M.-H., 2020. Modeling optimal quarantines under
infectious disease related mortality. Toulouse School of Economics Working
Papers 1136.

Goldman, S.M., Lightwood, J., 2002. Cost optimization in the SIS model of
infectious disease with treatment. Top. Econ. Anal. Policy 2, 1–24.

Gollier, C., 2020. Cost–benefit analysis of age-specific deconfinement strategies.
Mimeo.

Hethcote, H.W., 1976. Qualitative analyses of communicable disease models.
Math. Biosci. 28, 335–356.

Hethcote, H.W., 2000. The mathematics of infectious diseases. SIAM Rev. 42,
599–653.

Ibarrondo, F.J., Fulcher, D., Goodman-Meza, J., Elliott, C., Hofmann, M.A., Haus-
ner, K.G., Ferbas, N.H., Tobin, G.M., Aldrovandi, O.O., Yang, J.A., 2020. Rapid
decay of anti-SARS-CoV-2 antibodies in persons with mild COVID-19. New
Engl. J. Med. 383, 1085–1087.

Koopmans, T., 1965. On the concept of optimal economic growth. In: The
Econometric Approach To Development Planning. Rand-McNally, Chicago, pp.
225–287.

MIVEGEC/ETE, 2020. Estimation du nombre de reproduction de l’épidémie de
COVID-19 en France. Montpellier University, 1st 2020, https://alizon.ouvaton.
org/Rapport1_R0_France.html.

Ogura, M., Preciado, V.M., 2017. Optimal containment of epidemics in temporal
and adaptive networks. In: N., Masuda, Holme, P. (Eds.), Temporal Network
Epidemiology. Theoretical Biology. Springer, Singapore, pp. 241–286.

Piguillem, F., Shi, L., 2020. Optimal COVID-19 quarantine and testing policies.
CEPR Discussion Papers, DP14613.

Ramsey, F.P., 1928. A mathematical theory of saving. Econom. J. 38, 543–559.
Randolph, H., Barreiro, L., 2020. Herd immunity: Understanding COVID-19.

Immunity 52, 737–741.
Sanders, J.L., 1971. Quantitative guidelines for communicable disease control

programs. Biometrics 27, 883–893.
Seierstad, A., Sydsaeter, K., 1987. Optimal Control Theory with Economic

Applications. North Holland, Amsterdam.
Sethi, S.P., 1974. Quantitative guidelines for communicable disease control

program: a complete synthesis. Biometrics 30, 681–691.
Stern, N., Stern, N.H., 2007. The Economics of Climate Change: The Stern Review.

Cambridge University Press.
United Nations, 2020. UNData: Crude Birth Rate. UNdata, United Nations.

http://refhub.elsevier.com/S0304-4068(21)00026-4/sb1
http://refhub.elsevier.com/S0304-4068(21)00026-4/sb1
http://refhub.elsevier.com/S0304-4068(21)00026-4/sb1
http://refhub.elsevier.com/S0304-4068(21)00026-4/sb5
http://refhub.elsevier.com/S0304-4068(21)00026-4/sb5
http://refhub.elsevier.com/S0304-4068(21)00026-4/sb5
http://refhub.elsevier.com/S0304-4068(21)00026-4/sb6
http://refhub.elsevier.com/S0304-4068(21)00026-4/sb6
http://refhub.elsevier.com/S0304-4068(21)00026-4/sb6
http://refhub.elsevier.com/S0304-4068(21)00026-4/sb7
http://refhub.elsevier.com/S0304-4068(21)00026-4/sb7
http://refhub.elsevier.com/S0304-4068(21)00026-4/sb7
http://refhub.elsevier.com/S0304-4068(21)00026-4/sb8
http://refhub.elsevier.com/S0304-4068(21)00026-4/sb8
http://refhub.elsevier.com/S0304-4068(21)00026-4/sb8
http://refhub.elsevier.com/S0304-4068(21)00026-4/sb9
http://refhub.elsevier.com/S0304-4068(21)00026-4/sb9
http://refhub.elsevier.com/S0304-4068(21)00026-4/sb9
http://refhub.elsevier.com/S0304-4068(21)00026-4/sb9
http://refhub.elsevier.com/S0304-4068(21)00026-4/sb9
http://refhub.elsevier.com/S0304-4068(21)00026-4/sb10
http://refhub.elsevier.com/S0304-4068(21)00026-4/sb10
http://refhub.elsevier.com/S0304-4068(21)00026-4/sb10
http://refhub.elsevier.com/S0304-4068(21)00026-4/sb11
http://refhub.elsevier.com/S0304-4068(21)00026-4/sb13
http://refhub.elsevier.com/S0304-4068(21)00026-4/sb13
http://refhub.elsevier.com/S0304-4068(21)00026-4/sb13
http://refhub.elsevier.com/S0304-4068(21)00026-4/sb13
http://refhub.elsevier.com/S0304-4068(21)00026-4/sb13
http://refhub.elsevier.com/S0304-4068(21)00026-4/sb13
http://refhub.elsevier.com/S0304-4068(21)00026-4/sb13
http://refhub.elsevier.com/S0304-4068(21)00026-4/sb14
http://refhub.elsevier.com/S0304-4068(21)00026-4/sb14
http://refhub.elsevier.com/S0304-4068(21)00026-4/sb14
http://refhub.elsevier.com/S0304-4068(21)00026-4/sb15
http://refhub.elsevier.com/S0304-4068(21)00026-4/sb15
http://refhub.elsevier.com/S0304-4068(21)00026-4/sb15
http://refhub.elsevier.com/S0304-4068(21)00026-4/sb16
http://refhub.elsevier.com/S0304-4068(21)00026-4/sb16
http://refhub.elsevier.com/S0304-4068(21)00026-4/sb16
http://refhub.elsevier.com/S0304-4068(21)00026-4/sb18
http://refhub.elsevier.com/S0304-4068(21)00026-4/sb18
http://refhub.elsevier.com/S0304-4068(21)00026-4/sb18
http://refhub.elsevier.com/S0304-4068(21)00026-4/sb19
http://refhub.elsevier.com/S0304-4068(21)00026-4/sb19
http://refhub.elsevier.com/S0304-4068(21)00026-4/sb19
http://refhub.elsevier.com/S0304-4068(21)00026-4/sb20
http://refhub.elsevier.com/S0304-4068(21)00026-4/sb20
http://refhub.elsevier.com/S0304-4068(21)00026-4/sb20
http://refhub.elsevier.com/S0304-4068(21)00026-4/sb21
http://refhub.elsevier.com/S0304-4068(21)00026-4/sb21
http://refhub.elsevier.com/S0304-4068(21)00026-4/sb21
http://refhub.elsevier.com/S0304-4068(21)00026-4/sb22
http://refhub.elsevier.com/S0304-4068(21)00026-4/sb22
http://refhub.elsevier.com/S0304-4068(21)00026-4/sb22
http://refhub.elsevier.com/S0304-4068(21)00026-4/sb22
http://refhub.elsevier.com/S0304-4068(21)00026-4/sb22
http://refhub.elsevier.com/S0304-4068(21)00026-4/sb22
http://refhub.elsevier.com/S0304-4068(21)00026-4/sb22
http://refhub.elsevier.com/S0304-4068(21)00026-4/sb23
http://refhub.elsevier.com/S0304-4068(21)00026-4/sb23
http://refhub.elsevier.com/S0304-4068(21)00026-4/sb23
http://refhub.elsevier.com/S0304-4068(21)00026-4/sb23
http://refhub.elsevier.com/S0304-4068(21)00026-4/sb23
https://alizon.ouvaton.org/Rapport1_R0_France.html
https://alizon.ouvaton.org/Rapport1_R0_France.html
https://alizon.ouvaton.org/Rapport1_R0_France.html
http://refhub.elsevier.com/S0304-4068(21)00026-4/sb25
http://refhub.elsevier.com/S0304-4068(21)00026-4/sb25
http://refhub.elsevier.com/S0304-4068(21)00026-4/sb25
http://refhub.elsevier.com/S0304-4068(21)00026-4/sb25
http://refhub.elsevier.com/S0304-4068(21)00026-4/sb25
http://refhub.elsevier.com/S0304-4068(21)00026-4/sb26
http://refhub.elsevier.com/S0304-4068(21)00026-4/sb26
http://refhub.elsevier.com/S0304-4068(21)00026-4/sb26
http://refhub.elsevier.com/S0304-4068(21)00026-4/sb27
http://refhub.elsevier.com/S0304-4068(21)00026-4/sb28
http://refhub.elsevier.com/S0304-4068(21)00026-4/sb28
http://refhub.elsevier.com/S0304-4068(21)00026-4/sb28
http://refhub.elsevier.com/S0304-4068(21)00026-4/sb29
http://refhub.elsevier.com/S0304-4068(21)00026-4/sb29
http://refhub.elsevier.com/S0304-4068(21)00026-4/sb29
http://refhub.elsevier.com/S0304-4068(21)00026-4/sb30
http://refhub.elsevier.com/S0304-4068(21)00026-4/sb30
http://refhub.elsevier.com/S0304-4068(21)00026-4/sb30
http://refhub.elsevier.com/S0304-4068(21)00026-4/sb31
http://refhub.elsevier.com/S0304-4068(21)00026-4/sb31
http://refhub.elsevier.com/S0304-4068(21)00026-4/sb31
http://refhub.elsevier.com/S0304-4068(21)00026-4/sb32
http://refhub.elsevier.com/S0304-4068(21)00026-4/sb32
http://refhub.elsevier.com/S0304-4068(21)00026-4/sb32
http://refhub.elsevier.com/S0304-4068(21)00026-4/sb33

